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Summary Relative rates of heavy-atom-enhanced photosensitized 102-reactions may be used 
to determine @” of sensitizers in heavy-atom-free solutions. @i = 0.12 2 0.02 
is obtained for T 5.10 - 5 M methanolic solution of Rhodamine B . 

Procedures to determine triplet quantum yields, at, have been reviewed recently 

by F . Wilkinson 
1 
, who has developed a rather elegant method which utilizes heavy atom ad- 

ditives to increase 4; at the expense of the fluorescence quantum yield. Photosensitized 

singlet oxygen ( lO2) reactions may be used to obtain $t directly from the product quantum 
2 

yield . 

We now wish to report on a simple procedure which appears to be especially well 

suited to determine @; of dyes which sensitize singlet oxygen reactions with quantum yields 

above about 0.05. The method makes use of the fact that heavy atom additives enhance the 

rate of 02-consumption due to an increased production of dye triplet states 
3 

. 

The sequence of reactions involved 
4 

well established : 

Ia 
( 1) So + hv - Sl absorption 

in photosensitized singlet oxygen reactions is 

(5) Tl 
l/TT 

- So 

(2) s1 
kf - So + hvf fluorescence k02 

(6) T1f302 - so + lo2 
k. 

(3) Sl AS internal 1 /Tso 

L T; 

conversion (7) lO2 - 302 

(4) Sl intersystem (8) lo2 + A 
ka 

- A02 
crossing 

with So, Sl , and Tl being the sensitizer ( dye) in its ground-state, lowest excited singlet 

state, and lowest triplet state, respectively. 

In the absence of any other excited sensitizer quenching or singlet oxygen quench- 

ing, 
0 

and with ‘i- = 
F 

l/ ( kf + kit + kt ) = fluorescence lifetime, the rate of oxygen consump- 

tion is given by 

vo = IaktTi = I& (equ. 1) 
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under the conditions that ( a ) k, [A ] >> 1 /cso ( which is the case with 2, 5-dimethylfuran as 

A at [A] 25.10 - 3 M in methanol, since k, 2 10 8 M - 1 set-’ 4 and Crso = 5.10w6 set 5)* 

and (b) kG2[02],>l/TT. Generally, interaction of 302 is negligible with S1 but quantita- 

tive with Tl if rg is shorter than about 10 -8 set and if TT is longer than about 10 
-6 

set , 

since in oxygen- saturated common solvents [ 02 ] varies between about 10 - ’ and 10 - 3 M , 

whereas the rate constant varies between about 10 lo ( fluorescence quenching ) and 10 ’ 

M-l set-l ( triplet quenching ) 4,6,7 4 
. Xanthene dyes meet these requirements . 

In solution, internal conversion among excited singlet states occurs generally so 

fast that processes ( 2 ), ( 3 ), and ( 4) arise from the thermally relaxed lowest excited singlet 

state and thus proceed with quantum yields which are independent of the exciting wavelengths. 
8 Since xanthene dyes fulfil these conditions , the number of oxygen molecules consumed is 

proportional to the integral of the photon distribution absorbed by these sensitizers ( = Ia) ; 

the proportionality constant is 0;. 

With Rhodamine B in methanol, we find that addition of chloro-, bromo-, and iodo- 

alkanes ( =Q) up to rather high concentrations enhances the 02- consumption rate. If process 

(9) Sl +‘* Tl 
kq 

is responsible for the increased rate of 02-uptake, the rate expres- 

sion is given by 

"Q = J.a($ + kq[QI IT: (equ. 2) 

with L ,Q = l/( kf +kic + kt + kq[QI). 
F 

Compared with its lifetime in methanol, ‘02 lives about lo-times longer in chlo- 

roform and loo-times longer in carbon tetrachloride 9 . Heavy atom interaction with Sl results 

in Tl-formation rather than in So-p reduction and is many orders of magnitude more effective 

than with Tl 
10 

. Processes ( 10 ), ( 11 ), and ( 12) are therefore considered as negligible: 

(10) Sl 

spectrum 

+Q 
-So J (11) T1 +&, so > (12) lo2 +Qdoz 
Provided that the heavy atom additives do not alter appreciably the absorption 

of the sensitizer, 4; may be determined from the intercept of a plot of 
, 

(I-Vo/VQ) -I VS. l/ [Q ] with the ordinate, since 

(1 - V,/VQ) 
-1 

= (I - t$+‘/( 1 + kt/kq[Q]) (equ. 3) 

Figures 1 and 2 show the results. Each experimental point represents an average 

value from at least five experiments; the accuracy is generally better than 2 10%. The re- 

gression lines, and thus the intercepts and slopes given in Table 1 , were obtained by the 

method of least squares. 

Using the average value of 4; = 0.12 f 0.02 and the slopes obtained with the 

n-butyl halides, kq( Br)/ kq( I) = 0.12, kq(Cl)/kq(Br) = 0.09, and kq(Cl)/kq(I) = 0.01 
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Figure 1 

Figures 1 and 2: 

Plots of ( 1 - VO/VQ ) -’ vs. [Q]-1 

for alkyl halide - enhanced photo- 

sensitized oxygenations of 2,5- 

dimethylfuran ( [A ] start = 1.0.10 - ’ 

M ) in methanol at 13 o C 

Sensitizer: Rhodamine B, 
5~10-~ M; 

Light Source : Hg -High pressure 

lamp HPK 125 W , Philips ; 

Filter : yellowish-colored glass 

(Glashiitte Wertheim, Gkrmany ), 

cut - off at 373 nm . 
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Figure 2 
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agree fairly well with the ratios of the squares of the atomic spin - orbit coupling factors, 

pir/pf = 0.24, p&/p&. = 0.06, and p&/r: = 0.01, respectively. This result 

is taken as a support for the mechanism on which the method of 0; - determination is based. 

A detailed discussion on the value of 0; obtained for Rhodamine B will appear 
11 

elsewhere . 

Table 1 Triplet Quantum Yields, Intercepts and Slopes Obtained 
for Rhodamine B (5.10- 5M) in Methanol at 13°C 

1- chlorobutane +I 49.3 
1,2-dichloropropane +I 40.9 
chloroform 1.20 0.16 5.92 
carbon tetrachloride 1.17 0.14 16.22 
1-bromobutane 1.14 0.12 4.55 
dibromomethane 1.14 0.12 1.84 
bromoform 1.11 0.10 1.76 
1 -iodobutane 1.11 0.10 0. 52 
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